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Among the porous polycarboxylate-based metal organic frame-
works (MOFs),1 those based on rare-earth cations have deserved a
special attention due to their ability to form multifunctional hybrid
materials, combining their intrinsic porous character with physical
properties coming from the rare-earth, in the field of magnetism,
catalysis, or luminescence.2 Many lanthanide-based MOFs present
relatively open frameworks with included solvent molecules,3 but
collapse or become amorphous under guest removal,4 even if they
present reversible solvent exchange.3e,5 However, a few solids
remain crystallized5a,h,6 upon solvent departure and present a
permanent porosity,5b,c,6b,e,7but to our knowledge, only one lan-
thanide carboxylate (Tb(BTC)(H2O)1.5‚(DMF), MOF-76) has been
proven to show a significant porosity relative to nitrogen.8

We present here the synthesis, crystal structure, and nitrogen
sorption properties of Tb(BTB)(H2O)‚2(C6H12O) (BTB ) 1,3,5-
benzenetrisbenzoate), a three-dimensional lanthanide carboxylate
MOF, later denoted MIL-103, presenting a permanent porosity and
a high surface area after guest removal.

The BTB ligand, already used by Yaghi and co-workers with
transition-metal cations to produce highly porous MOFs,9 was
synthesized starting from 1,3,5-tritolylbenzene10 following the
published procedure.11 MIL-103 was hydrothermally synthesized
from stoichiometric amounts of TbCl3‚6H2O, H3BTB, and NaOH
in a 1:1 biphasic mixture of water and cyclohexanol12 (see
Supporting Information).13

MIL-103 is trigonal (a ) 28.5344(8) Å,c ) 12.2148(5) Å, space
groupR32),13 and the structure is a rare case of the (3,5)-coordinated
minimal net hms.14 TbIII ions are 9-fold coordinated by eight
carboxylate oxygen atoms and one water molecule, in accordance
with bond valence calculations (VTb ) 2.91-3.18, VOw ) 0.33-
0.36, depending on the bond valence parameters used15). Edge-
sharing [TbO9] polyhedra define chains running in thec direction.
They are connected by the extended tritopic BTB3- ligand to afford
1-D hexagonal pores containing the free cyclohexanol molecules
(Figure 1). When solvent is removed, free cylinders of ca. 10 Å
diameter (taking into account the van der Waals radii of the atoms)
are defined (see Figure 1).

Thermogravimetric analysis was performed under oxygen at-
mosphere (see insert in Figure 2). A 23% weight loss is observed
between room temperature and 150°C, which is consistent with
the free solvent departure (theoretical 24-25%). A slightly decreas-
ing plateau follows (2% weight loss, which could be associated
with the coordinated water departure) until 400°C, where MIL-
103 collapses. The remaining product is Tb2O3, with a residual mass
(77% weight loss) consistent with theoretical value (77%).

X-ray thermodiffraction analysis was carried under air. Notice-
able diffraction intensity variations are observed between 50 and
100°C, accompanied by a slight position shift of the Bragg peaks.

No change occurs until 280°C, where the long-range order begins
to disappear to form an amorphous phase above 420°C (Figure 2)
before apparition of Tb2O3 upon further heating.

The first change certainly corresponds to a small structural
rearrangement consecutive to the solvent departure (cell indexing
at 220 °C: a ) 28.178(1) Å, c ) 12.196(1) Å). The loss of
crystallinity above 280°C could be associated with the bound water
departure, which is consistent with the TG analysis. MIL-103 heated
at 300°C does not recover its crystallinity after rehydration, proving
that the transformation is irreversible on the day time scale.

The nitrogen sorption properties of MIL-103 were investigated.
The as-synthesized product was degassed at 150°C for 15 h under
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Figure 1. View of MIL-103 along thec axis, showing the hexagonal pores
filled with free solvent molecules (one pore is pictured empty for clarity).

Figure 2. X-ray thermodiffractogram of MIL-103 under air from 20 to
500 °C. The following color code corresponding to the structural changes
(see text) was used: red (20-90 °C), blue (100-260°C), green (280-400
°C), purple (420-500 °C). Insert: TG analysis under oxygen (1°C/min).
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vacuum, and the sorption measurement was performed at 77 K using
nitrogen as the sorbed gas. As shown in Figure 3, MIL-103 exhibits
a typical type I isotherm, with a Langmuir surface area greater than
1000 m2‚g-1 (ranging from 1030 to 1330 m2‚g-1, depending on
the batch used; surfaces between 730 and 930 m2‚g-1 were found
using the BET model). The same experiment performed after
activation at 300°C gives a surface of 60 m2‚g-1, confirming that
the loss of crystallinity above 280°C corresponds to the collapse
of the structure.

This is so far the largest surface area reported for lanthanide-
based porous solids, far beyond the best one previously reported
for rare-earth-based MOF (SLangmuir ) 334 m2‚g-1 for MOF-76).8

MIL-103 could also be synthesized with other light rare-earth
elements (RE) Y, La-Ho). Moreover, in the H3BTB/REIIIX3 (X
) Cl, NO3) system, only this single crystalline phase was observed
up to now, as checked by powder diffraction, whatever the
temperature (100-200°C), reaction time (10 h to 9 days), NaOH/
H3BTB/LnX3 ratio, and concentrations were used.

To conclude, we present here the first lanthanide-based MOF
keeping its crystalline order upon guest removal and showing both
large pores (free diameter>10 Å) and a high surface area (>1000
m2‚g-1) relative to nitrogen. Studies of the lability of the bound
water by solid-state NMR, which is of importance for catalytic
applications, as well as luminescence measurements and insertion
properties are in progress and will be reported in due course.
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103(RE) (RE) Y, La-Ho). This material is available free of charge
via the Internet at http://pubs.acs.org.

References

(1) For recent reviews, see: (a) Kitagawa, S.; Kitaura, R.; Noro, S.Angew.
Chem., Int. Ed.2004, 43, 2334-2375. (b) Rao, C. N. R.; Natarajan, S.;
Vaidhyanathan, R.Angew. Chem., Int. Ed.2004, 43, 1466-1496. (c)
Bradshaw, D.; Claridge, J. B.; Cussen, E. J.; Prior, T. J.; Rosseinsky, M.
J. Acc. Chem. Res.2005, 38, 273-282. (d) Fe´rey, G.; Mellot-Draznieks,
C.; Serre, C.; Millange, F.Acc. Chem. Res.2005, 38, 217-225. (e)
Ockwig, N. W.; Delgado-Friedrichs, O.; O’Keeffe, M.; Yaghi, O. M.Acc.
Chem. Res.2005, 38, 176-182. (f) Suslick, K. S.; Bhyrappa, P.; Chou,
J.-H.; Kosal, M. E.; Nakagaki, S.; Smithenry, D. W.; Wilson, S. R.Acc.
Chem. Res.2005, 38, 283-291.

(2) Guillou, O.; Daiguebonne, C.Handbook on the Physics and Chemistry
of Rare Earths; Gschneidner, K. A., Bu¨nzli, J.-C. G., Pecharsky, V. K.,
Eds.; Elsevier: New York, 2005; Vol. 34, pp 359-404.

(3) For early work, see: (a) Zhi-Bang, D.; Zhong-Sheng, J.; Ge-Geng, W.;
Jia-Zan, N.J. Huaxue(J. Struct. Chem.) 1990, 9, 64-69. (b) Robl, C.;
Hentschel, S.Z. Naturforsch. 1992, 47, 1561-1564. (c) Baggio, R.;
Garland, M. T.; Perec, M.; Vega, D.Inorg. Chem.1996, 35, 2396-2399.
(d) Serpaggi, F.; Fe´rey, G. J. Mater. Chem. 1998, 8, 2737-2741. (e)
Kiritsis, V.; Michaelides, A.; Skoulika, S.; Golhen, S.; Ouahab, L.Inorg.
Chem.1998, 37, 3407-3410.

(4) (a) Chui, S. S.-Y.; Siu, A.; Feng, X.; Zhang, Z. Y.; Mak, T. C. W.;
Williams, I. D. Inorg. Chem. Commun. 2001, 4, 467-470. (b) Serre, C.;
Pelle, F.; Gardant, N.; Fe´rey, G.Chem. Mater.2004, 16, 1177-1182. (c)
de Lill, D. T.; Gunning, N. S.; Cahill, C. L.Inorg. Chem.2005, 44, 258-
266. (d) Zhang, Z.-H.; Shen, Z.-L.; Okamura, T.; Zhu, H.-F.; Sun, W.-
Y.; Ueyama, N.Cryst. Growth Des.2005, 5, 1191-1197.

(5) (a) Serpaggi, F.; Luxbacher, T.; Cheetham, A. K.; Fe´rey, G.J. Solid State
Chem.1999, 145, 580-586. (b) Reineke, T. M.; Eddaoudi, M.; Fehr, M.;
Kelley, D.; Yaghi, O. M.J. Am. Chem. Soc.1999, 121, 1651-1657. (c)
Reineke, T. M.; Eddaoudi, M.; Moler, D.; O’Keeffe, M.; Yaghi, O. M.J.
Am. Chem. Soc.2000, 122, 4843-4844. (d) Pan, L.; Huang, X.; Li, J.;
Wu, Y.; Zheng, N.Angew. Chem., Int. Ed. 2000, 39, 527-530. (e)
Daiguebonne, C.; Guillou, O.; Grault, Y.; Boubekeur, K.J. Alloys Compds.
2001, 323-324, 199-203. (f) Dimos, A.; Tsaousis, D.; Michaelides, A.;
Skoulika, S.; Golhen, S.; Ouahab, L.; Didierjean, C.; Aubry, A.Chem.
Mater.2002, 14, 2616-2622. (g) Almeida Paz, F. A.; Klinowski, J.Chem.
Commun.2003, 1484-1485. (h) Chen, X.-Y.; Zhao, B.; Shi, W.; Xia, J.;
Cheng, P.; Liao, D.-Z.; Yan, S.-P.; Jiang, Z.-H.Chem. Mater.2005, 17,
2866-2874.

(6) (a) Serre, C.; Fe´rey, G.J. Mater. Chem.2002, 12, 3053-3057. (b) Pan,
L.; Adams, K. M.; Hernandez, H. E.; Wang, X.; Zheng, C.; Hattori, Y.;
Kaneko, K.J. Am. Chem. Soc. 2003, 125, 3062-3067. (c) Zheng, X.;
Sun, C.; Lu, S.; Liao, F.; Gao, S.; Jin, L.Eur. J. Inorg. Chem.2004,
3262-3268. (d) Michaelides, A.; Skoulika, S.Cryst. Growth Des.2005,
5, 529-533. (e) Maji, T. K.; Mostafa, G.; Chang, H.-C.; Kitagawa, S.
Chem. Commun.2005, 2436-2438.

(7) (a) Reineke, T. M.; Eddaoudi, M.; O’Keeffe, M.; Yaghi, O. M.Angew.
Chem., Int. Ed.1999, 38, 2590-2594. (b) Millange, F.; Serre, C.; Marrot,
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Figure 3. Nitrogen gas adsorption isotherm at 77 K for MIL-103 degassed
overnight at 150°C. P/P0 is the ratio of gas pressure (P) to saturation
pressure (P0 ) 750 mmHg).V is the adsorbed volume.
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